Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xor3dc Unicode version

Theorem xor3dc 1294
 Description: Two ways to express "exclusive or" between decidable propositions. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
xor3dc DECID DECID

Proof of Theorem xor3dc
StepHypRef Expression
1 dcn 757 . . . . . 6 DECID DECID
2 dcbi 855 . . . . . 6 DECID DECID DECID
31, 2syl5 32 . . . . 5 DECID DECID DECID
43imp 119 . . . 4 DECID DECID DECID
5 pm5.18dc 788 . . . . . . 7 DECID DECID
65imp 119 . . . . . 6 DECID DECID
76a1d 22 . . . . 5 DECID DECID DECID
87con2biddc 785 . . . 4 DECID DECID DECID
94, 8mpd 13 . . 3 DECID DECID
109bicomd 133 . 2 DECID DECID
1110ex 112 1 DECID DECID
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 101   wb 102  DECID wdc 753 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640 This theorem depends on definitions:  df-bi 114  df-dc 754 This theorem is referenced by:  pm5.15dc  1296  xor2dc  1297  nbbndc  1301
 Copyright terms: Public domain W3C validator