ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsnen2g Unicode version

Theorem xpsnen2g 6723
Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
xpsnen2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B
)

Proof of Theorem xpsnen2g
StepHypRef Expression
1 snexg 4108 . . 3  |-  ( A  e.  V  ->  { A }  e.  _V )
2 xpcomeng 6722 . . 3  |-  ( ( { A }  e.  _V  /\  B  e.  W
)  ->  ( { A }  X.  B
)  ~~  ( B  X.  { A } ) )
31, 2sylan 281 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  ( B  X.  { A }
) )
4 xpsneng 6716 . . 3  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( B  X.  { A } )  ~~  B
)
54ancoms 266 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  X.  { A } )  ~~  B
)
6 entr 6678 . 2  |-  ( ( ( { A }  X.  B )  ~~  ( B  X.  { A }
)  /\  ( B  X.  { A } ) 
~~  B )  -> 
( { A }  X.  B )  ~~  B
)
73, 5, 6syl2anc 408 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480   _Vcvv 2686   {csn 3527   class class class wbr 3929    X. cxp 4537    ~~ cen 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-er 6429  df-en 6635
This theorem is referenced by:  djucomen  7072  djuassen  7073  xpdjuen  7074
  Copyright terms: Public domain W3C validator