ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpundi Unicode version

Theorem xpundi 4590
Description: Distributive law for cross product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpundi  |-  ( A  X.  ( B  u.  C ) )  =  ( ( A  X.  B )  u.  ( A  X.  C ) )

Proof of Theorem xpundi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4540 . 2  |-  ( A  X.  ( B  u.  C ) )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( B  u.  C
) ) }
2 df-xp 4540 . . . 4  |-  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
3 df-xp 4540 . . . 4  |-  ( A  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  C ) }
42, 3uneq12i 3223 . . 3  |-  ( ( A  X.  B )  u.  ( A  X.  C ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )
5 elun 3212 . . . . . . 7  |-  ( y  e.  ( B  u.  C )  <->  ( y  e.  B  \/  y  e.  C ) )
65anbi2i 452 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  ( B  u.  C ) )  <->  ( x  e.  A  /\  (
y  e.  B  \/  y  e.  C )
) )
7 andi 807 . . . . . 6  |-  ( ( x  e.  A  /\  ( y  e.  B  \/  y  e.  C
) )  <->  ( (
x  e.  A  /\  y  e.  B )  \/  ( x  e.  A  /\  y  e.  C
) ) )
86, 7bitri 183 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  ( B  u.  C ) )  <->  ( (
x  e.  A  /\  y  e.  B )  \/  ( x  e.  A  /\  y  e.  C
) ) )
98opabbii 3990 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( B  u.  C ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  \/  ( x  e.  A  /\  y  e.  C ) ) }
10 unopab 4002 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  \/  ( x  e.  A  /\  y  e.  C ) ) }
119, 10eqtr4i 2161 . . 3  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( B  u.  C ) ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )
124, 11eqtr4i 2161 . 2  |-  ( ( A  X.  B )  u.  ( A  X.  C ) )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( B  u.  C
) ) }
131, 12eqtr4i 2161 1  |-  ( A  X.  ( B  u.  C ) )  =  ( ( A  X.  B )  u.  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480    u. cun 3064   {copab 3983    X. cxp 4532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-un 3070  df-opab 3985  df-xp 4540
This theorem is referenced by:  xpun  4595  djuassen  7066  xpdjuen  7067
  Copyright terms: Public domain W3C validator