ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlelttr Unicode version

Theorem xrlelttr 9582
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrlelttr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem xrlelttr
StepHypRef Expression
1 simprl 520 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <_  B )
2 simpl1 984 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  e.  RR* )
3 simpl2 985 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  e.  RR* )
4 xrlenlt 7822 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
52, 3, 4syl2anc 408 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
61, 5mpbid 146 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  -.  B  <  A )
76pm2.21d 608 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  A  ->  A  <  C ) )
8 idd 21 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( A  <  C  ->  A  <  C ) )
9 simprr 521 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  <  C )
10 simpl3 986 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  C  e.  RR* )
11 xrltso 9575 . . . . . 6  |-  <  Or  RR*
12 sowlin 4237 . . . . . 6  |-  ( (  <  Or  RR*  /\  ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* ) )  -> 
( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
1311, 12mpan 420 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* )  ->  ( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
143, 10, 2, 13syl3anc 1216 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
159, 14mpd 13 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  A  \/  A  <  C ) )
167, 8, 15mpjaod 707 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <  C )
1716ex 114 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    e. wcel 1480   class class class wbr 3924    Or wor 4212   RR*cxr 7792    < clt 7793    <_ cle 7794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-po 4213  df-iso 4214  df-xp 4540  df-cnv 4542  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799
This theorem is referenced by:  xrlelttrd  9586  xrre  9596  xrre2  9597  iooss1  9692  iccssioo  9718  iccssico  9721  iocssioo  9739  ioossioo  9741  ico0  10032  bldisj  12559  xblm  12575  blsscls2  12651  metcnpi3  12675
  Copyright terms: Public domain W3C validator