ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrletrd Unicode version

Theorem xrletrd 9010
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xrlttrd.1  |-  ( ph  ->  A  e.  RR* )
xrlttrd.2  |-  ( ph  ->  B  e.  RR* )
xrlttrd.3  |-  ( ph  ->  C  e.  RR* )
xrletrd.4  |-  ( ph  ->  A  <_  B )
xrletrd.5  |-  ( ph  ->  B  <_  C )
Assertion
Ref Expression
xrletrd  |-  ( ph  ->  A  <_  C )

Proof of Theorem xrletrd
StepHypRef Expression
1 xrletrd.4 . 2  |-  ( ph  ->  A  <_  B )
2 xrletrd.5 . 2  |-  ( ph  ->  B  <_  C )
3 xrlttrd.1 . . 3  |-  ( ph  ->  A  e.  RR* )
4 xrlttrd.2 . . 3  |-  ( ph  ->  B  e.  RR* )
5 xrlttrd.3 . . 3  |-  ( ph  ->  C  e.  RR* )
6 xrletr 9006 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )
73, 4, 5, 6syl3anc 1170 . 2  |-  ( ph  ->  ( ( A  <_  B  /\  B  <_  C
)  ->  A  <_  C ) )
81, 2, 7mp2and 424 1  |-  ( ph  ->  A  <_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1434   class class class wbr 3805   RR*cxr 7266    <_ cle 7268
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-po 4079  df-iso 4080  df-xp 4397  df-cnv 4399  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator