ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllemneg Unicode version

Theorem zaddcllemneg 9061
Description: Lemma for zaddcl 9062. Special case in which  -u N is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllemneg  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )

Proof of Theorem zaddcllemneg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 967 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  N  e.  RR )
21recnd 7762 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  N  e.  CC )
32negnegd 8032 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  -u -u N  =  N )
43oveq2d 5758 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  -u -u N
)  =  ( M  +  N ) )
5 negeq 7923 . . . . . . . 8  |-  ( x  =  1  ->  -u x  =  -u 1 )
65oveq2d 5758 . . . . . . 7  |-  ( x  =  1  ->  ( M  +  -u x )  =  ( M  +  -u 1 ) )
76eleq1d 2186 . . . . . 6  |-  ( x  =  1  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u 1
)  e.  ZZ ) )
87imbi2d 229 . . . . 5  |-  ( x  =  1  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u 1 )  e.  ZZ ) ) )
9 negeq 7923 . . . . . . . 8  |-  ( x  =  y  ->  -u x  =  -u y )
109oveq2d 5758 . . . . . . 7  |-  ( x  =  y  ->  ( M  +  -u x )  =  ( M  +  -u y ) )
1110eleq1d 2186 . . . . . 6  |-  ( x  =  y  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u y
)  e.  ZZ ) )
1211imbi2d 229 . . . . 5  |-  ( x  =  y  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u y )  e.  ZZ ) ) )
13 negeq 7923 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  -u x  =  -u ( y  +  1 ) )
1413oveq2d 5758 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  ( M  +  -u x )  =  ( M  +  -u ( y  +  1 ) ) )
1514eleq1d 2186 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u (
y  +  1 ) )  e.  ZZ ) )
1615imbi2d 229 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
17 negeq 7923 . . . . . . . 8  |-  ( x  =  -u N  ->  -u x  =  -u -u N )
1817oveq2d 5758 . . . . . . 7  |-  ( x  =  -u N  ->  ( M  +  -u x )  =  ( M  +  -u -u N ) )
1918eleq1d 2186 . . . . . 6  |-  ( x  =  -u N  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u -u N
)  e.  ZZ ) )
2019imbi2d 229 . . . . 5  |-  ( x  =  -u N  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u -u N
)  e.  ZZ ) ) )
21 zcn 9027 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  CC )
2221adantr 274 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  M  e.  CC )
23 1cnd 7750 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  1  e.  CC )
2422, 23negsubd 8047 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u
1 )  =  ( M  -  1 ) )
25 peano2zm 9060 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
2625adantr 274 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  -  1 )  e.  ZZ )
2724, 26eqeltrd 2194 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u
1 )  e.  ZZ )
28 nncn 8696 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
2928ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  y  e.  CC )
30 1cnd 7750 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  1  e.  CC )
3129, 30negdi2d 8055 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  -u (
y  +  1 )  =  ( -u y  -  1 ) )
3231oveq2d 5758 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  -u ( y  +  1 ) )  =  ( M  +  ( -u y  -  1 ) ) )
3322ad2antlr 480 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  M  e.  CC )
3429negcld 8028 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  -u y  e.  CC )
3533, 34, 30addsubassd 8061 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  (
( M  +  -u y )  -  1 )  =  ( M  +  ( -u y  -  1 ) ) )
36 peano2zm 9060 . . . . . . . . . 10  |-  ( ( M  +  -u y
)  e.  ZZ  ->  ( ( M  +  -u y )  -  1 )  e.  ZZ )
3736adantl 275 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  (
( M  +  -u y )  -  1 )  e.  ZZ )
3835, 37eqeltrrd 2195 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  ( -u y  -  1 ) )  e.  ZZ )
3932, 38eqeltrd 2194 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ )
4039exp31 361 . . . . . 6  |-  ( y  e.  NN  ->  (
( M  e.  ZZ  /\  N  e.  RR )  ->  ( ( M  +  -u y )  e.  ZZ  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
4140a2d 26 . . . . 5  |-  ( y  e.  NN  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u y )  e.  ZZ )  -> 
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
428, 12, 16, 20, 27, 41nnind 8704 . . . 4  |-  ( -u N  e.  NN  ->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u -u N )  e.  ZZ ) )
4342impcom 124 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  RR )  /\  -u N  e.  NN )  ->  ( M  +  -u -u N )  e.  ZZ )
44433impa 1161 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  -u -u N
)  e.  ZZ )
454, 44eqeltrrd 2195 1  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 947    = wceq 1316    e. wcel 1465  (class class class)co 5742   CCcc 7586   RRcr 7587   1c1 7589    + caddc 7591    - cmin 7901   -ucneg 7902   NNcn 8688   ZZcz 9022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023
This theorem is referenced by:  zaddcl  9062
  Copyright terms: Public domain W3C validator