ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfregfr Unicode version

Theorem zfregfr 4326
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.)
Assertion
Ref Expression
zfregfr  |-  _E  Fr  A

Proof of Theorem zfregfr
Dummy variables  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4097 . 2  |-  (  _E  Fr  A  <->  A. sFrFor  _E  A s )
2 bi2.04 241 . . . . . . 7  |-  ( ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  <->  ( x  e.  A  ->  ( A. y  e.  x  [
y  /  x ]
( x  e.  A  ->  x  e.  s )  ->  x  e.  s ) ) )
32albii 1375 . . . . . 6  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  <->  A. x ( x  e.  A  ->  ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s ) ) )
4 df-ral 2328 . . . . . 6  |-  ( A. x  e.  A  ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s )  <->  A. x
( x  e.  A  ->  ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s ) ) )
53, 4bitr4i 180 . . . . 5  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  <->  A. x  e.  A  ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s ) )
6 sbim 1843 . . . . . . . . . . 11  |-  ( [ y  /  x ]
( x  e.  A  ->  x  e.  s )  <-> 
( [ y  /  x ] x  e.  A  ->  [ y  /  x ] x  e.  s
) )
7 clelsb3 2158 . . . . . . . . . . . 12  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
8 clelsb3 2158 . . . . . . . . . . . 12  |-  ( [ y  /  x ]
x  e.  s  <->  y  e.  s )
97, 8imbi12i 232 . . . . . . . . . . 11  |-  ( ( [ y  /  x ] x  e.  A  ->  [ y  /  x ] x  e.  s
)  <->  ( y  e.  A  ->  y  e.  s ) )
106, 9bitri 177 . . . . . . . . . 10  |-  ( [ y  /  x ]
( x  e.  A  ->  x  e.  s )  <-> 
( y  e.  A  ->  y  e.  s ) )
1110ralbii 2347 . . . . . . . . 9  |-  ( A. y  e.  x  [
y  /  x ]
( x  e.  A  ->  x  e.  s )  <->  A. y  e.  x  ( y  e.  A  ->  y  e.  s ) )
12 ralcom3 2494 . . . . . . . . 9  |-  ( A. y  e.  x  (
y  e.  A  -> 
y  e.  s )  <->  A. y  e.  A  ( y  e.  x  ->  y  e.  s ) )
1311, 12bitri 177 . . . . . . . 8  |-  ( A. y  e.  x  [
y  /  x ]
( x  e.  A  ->  x  e.  s )  <->  A. y  e.  A  ( y  e.  x  ->  y  e.  s ) )
14 epel 4057 . . . . . . . . . 10  |-  ( y  _E  x  <->  y  e.  x )
1514imbi1i 231 . . . . . . . . 9  |-  ( ( y  _E  x  -> 
y  e.  s )  <-> 
( y  e.  x  ->  y  e.  s ) )
1615ralbii 2347 . . . . . . . 8  |-  ( A. y  e.  A  (
y  _E  x  -> 
y  e.  s )  <->  A. y  e.  A  ( y  e.  x  ->  y  e.  s ) )
1713, 16bitr4i 180 . . . . . . 7  |-  ( A. y  e.  x  [
y  /  x ]
( x  e.  A  ->  x  e.  s )  <->  A. y  e.  A  ( y  _E  x  ->  y  e.  s ) )
1817imbi1i 231 . . . . . 6  |-  ( ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s )  <->  ( A. y  e.  A  (
y  _E  x  -> 
y  e.  s )  ->  x  e.  s ) )
1918ralbii 2347 . . . . 5  |-  ( A. x  e.  A  ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s )  <->  A. x  e.  A  ( A. y  e.  A  (
y  _E  x  -> 
y  e.  s )  ->  x  e.  s ) )
205, 19bitri 177 . . . 4  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  <->  A. x  e.  A  ( A. y  e.  A  ( y  _E  x  ->  y  e.  s )  ->  x  e.  s ) )
21 ax-setind 4290 . . . . 5  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  ->  A. x
( x  e.  A  ->  x  e.  s ) )
22 dfss2 2962 . . . . 5  |-  ( A 
C_  s  <->  A. x
( x  e.  A  ->  x  e.  s ) )
2321, 22sylibr 141 . . . 4  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  ->  A  C_  s
)
2420, 23sylbir 129 . . 3  |-  ( A. x  e.  A  ( A. y  e.  A  ( y  _E  x  ->  y  e.  s )  ->  x  e.  s )  ->  A  C_  s
)
25 df-frfor 4096 . . 3  |-  (FrFor  _E  A s  <->  ( A. x  e.  A  ( A. y  e.  A  ( y  _E  x  ->  y  e.  s )  ->  x  e.  s )  ->  A  C_  s
) )
2624, 25mpbir 138 . 2  |- FrFor  _E  A
s
271, 26mpgbir 1358 1  |-  _E  Fr  A
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1257    e. wcel 1409   [wsb 1661   A.wral 2323    C_ wss 2945   class class class wbr 3792    _E cep 4052  FrFor wfrfor 4092    Fr wfr 4093
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-eprel 4054  df-frfor 4096  df-frind 4097
This theorem is referenced by:  ordfr  4327  wessep  4330  reg3exmidlemwe  4331
  Copyright terms: Public domain W3C validator