ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmulcld Unicode version

Theorem zmulcld 8608
Description: Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
zred.1  |-  ( ph  ->  A  e.  ZZ )
zaddcld.1  |-  ( ph  ->  B  e.  ZZ )
Assertion
Ref Expression
zmulcld  |-  ( ph  ->  ( A  x.  B
)  e.  ZZ )

Proof of Theorem zmulcld
StepHypRef Expression
1 zred.1 . 2  |-  ( ph  ->  A  e.  ZZ )
2 zaddcld.1 . 2  |-  ( ph  ->  B  e.  ZZ )
3 zmulcl 8537 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  e.  ZZ )
41, 2, 3syl2anc 403 1  |-  ( ph  ->  ( A  x.  B
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434  (class class class)co 5563    x. cmul 7100   ZZcz 8484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485
This theorem is referenced by:  qapne  8857  qtri3or  9381  2tnp1ge0ge0  9435  flhalf  9436  intfracq  9454  zmodcl  9478  modqmul1  9511  addmodlteq  9532  sqoddm1div8  9774  dvdscmulr  10432  dvdsmulcr  10433  modmulconst  10435  dvds2ln  10436  dvdsmod  10470  even2n  10481  2tp1odd  10491  ltoddhalfle  10500  m1expo  10507  m1exp1  10508  divalglemqt  10526  modremain  10536  flodddiv4  10541  gcdaddm  10582  bezoutlemnewy  10592  bezoutlemstep  10593  bezoutlembi  10601  mulgcd  10612  dvdsmulgcd  10621  bezoutr  10628  lcmval  10652  lcmcllem  10656  lcmgcdlem  10666  mulgcddvds  10683  rpmulgcd2  10684  divgcdcoprm0  10690  cncongr1  10692  cncongr2  10693  prmind2  10709  exprmfct  10726  2sqpwodd  10761  hashdvds  10804  phimullem  10808  oddennn  10812
  Copyright terms: Public domain W3C validator