ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zneo Unicode version

Theorem zneo 9145
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
Assertion
Ref Expression
zneo  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  =/=  ( ( 2  x.  B )  +  1 ) )

Proof of Theorem zneo
StepHypRef Expression
1 halfnz 9140 . . 3  |-  -.  (
1  /  2 )  e.  ZZ
2 2cn 8784 . . . . . . 7  |-  2  e.  CC
3 zcn 9052 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  CC )
43adantr 274 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  CC )
5 mulcl 7740 . . . . . . 7  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
62, 4, 5sylancr 410 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  e.  CC )
7 zcn 9052 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
87adantl 275 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  CC )
9 mulcl 7740 . . . . . . 7  |-  ( ( 2  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  e.  CC )
102, 8, 9sylancr 410 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  B
)  e.  CC )
11 1cnd 7775 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  1  e.  CC )
126, 10, 11subaddd 8084 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  =  1  <-> 
( ( 2  x.  B )  +  1 )  =  ( 2  x.  A ) ) )
132a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  2  e.  CC )
1413, 4, 8subdid 8169 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  ( A  -  B )
)  =  ( ( 2  x.  A )  -  ( 2  x.  B ) ) )
1514oveq1d 5782 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  ( A  -  B
) )  /  2
)  =  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  /  2 ) )
16 zsubcl 9088 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
17 zcn 9052 . . . . . . . . . 10  |-  ( ( A  -  B )  e.  ZZ  ->  ( A  -  B )  e.  CC )
1816, 17syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  CC )
19 2ap0 8806 . . . . . . . . . 10  |-  2 #  0
2019a1i 9 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  2 #  0 )
2118, 13, 20divcanap3d 8548 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  ( A  -  B
) )  /  2
)  =  ( A  -  B ) )
2215, 21eqtr3d 2172 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  =  ( A  -  B ) )
2322, 16eqeltrd 2214 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  e.  ZZ )
24 oveq1 5774 . . . . . . 7  |-  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  =  1  ->  (
( ( 2  x.  A )  -  (
2  x.  B ) )  /  2 )  =  ( 1  / 
2 ) )
2524eleq1d 2206 . . . . . 6  |-  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  =  1  ->  (
( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  e.  ZZ  <->  ( 1  /  2 )  e.  ZZ ) )
2623, 25syl5ibcom 154 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  =  1  ->  ( 1  / 
2 )  e.  ZZ ) )
2712, 26sylbird 169 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  B )  +  1 )  =  ( 2  x.  A )  ->  ( 1  / 
2 )  e.  ZZ ) )
2827necon3bd 2349 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  ( 1  /  2 )  e.  ZZ  ->  ( (
2  x.  B )  +  1 )  =/=  ( 2  x.  A
) ) )
291, 28mpi 15 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  B )  +  1 )  =/=  ( 2  x.  A ) )
3029necomd 2392 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  =/=  ( ( 2  x.  B )  +  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    =/= wne 2306   class class class wbr 3924  (class class class)co 5767   CCcc 7611   0cc0 7613   1c1 7614    + caddc 7616    x. cmul 7618    - cmin 7926   # cap 8336    / cdiv 8425   2c2 8764   ZZcz 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048
This theorem is referenced by:  nneo  9147  zeo2  9150
  Copyright terms: Public domain W3C validator