![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zre | Unicode version |
Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
zre |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 8434 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-rab 2358 df-v 2604 df-un 2978 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-iota 4897 df-fv 4940 df-ov 5546 df-neg 7349 df-z 8433 |
This theorem is referenced by: zcn 8437 zrei 8438 zssre 8439 elnn0z 8445 elnnz1 8455 peano2z 8468 zaddcl 8472 ztri3or0 8474 ztri3or 8475 zletric 8476 zlelttric 8477 zltnle 8478 zleloe 8479 zletr 8481 znnsub 8483 nzadd 8484 zltp1le 8486 zleltp1 8487 znn0sub 8497 zapne 8503 zdceq 8504 zdcle 8505 zdclt 8506 zltlen 8507 nn0ge0div 8515 zextle 8519 btwnnz 8522 suprzclex 8526 msqznn 8528 peano2uz2 8535 uzind 8539 fzind 8543 fnn0ind 8544 eluzuzle 8708 uzid 8714 uzneg 8718 uz11 8722 eluzp1m1 8723 eluzp1p1 8725 eluzaddi 8726 eluzsubi 8727 uzin 8732 uz3m2nn 8742 peano2uz 8752 nn0pzuz 8756 eluz2b2 8771 uz2mulcl 8776 eqreznegel 8780 lbzbi 8782 qre 8791 zltaddlt1le 9104 elfz1eq 9130 fznlem 9136 fzen 9138 uzsubsubfz 9142 fzaddel 9153 fzsuc2 9172 fzp1disj 9173 fzrev 9177 elfz1b 9183 fzneuz 9194 fzp1nel 9197 elfz0fzfz0 9214 fz0fzelfz0 9215 fznn0sub2 9216 fz0fzdiffz0 9218 elfzmlbp 9220 difelfznle 9223 elfzouz2 9247 fzonlt0 9253 fzossrbm1 9259 fzo1fzo0n0 9269 elfzo0z 9270 fzofzim 9274 eluzgtdifelfzo 9283 fzossfzop1 9298 ssfzo12bi 9311 elfzomelpfzo 9317 fzosplitprm1 9320 fzostep1 9323 flid 9366 flqbi2 9373 2tnp1ge0ge0 9383 flhalf 9384 fldiv4p1lem1div2 9387 ceiqle 9395 uzsinds 9518 zsqcl2 9650 nn0abscl 10109 evennn02n 10426 evennn2n 10427 ltoddhalfle 10437 infssuzex 10489 dfgcd2 10547 ialgcvga 10577 isprm3 10644 dvdsnprmd 10651 sqnprm 10661 |
Copyright terms: Public domain | W3C validator |