ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zssinfcl Unicode version

Theorem zssinfcl 11641
Description: The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
Hypotheses
Ref Expression
zssinfcl.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  B  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  B  z  <  y ) ) )
zssinfcl.ss  |-  ( ph  ->  B  C_  ZZ )
zssinfcl.zz  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  ZZ )
Assertion
Ref Expression
zssinfcl  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  B
)
Distinct variable groups:    x, B, y, z    ph, x, y, z

Proof of Theorem zssinfcl
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssinfcl.zz . . . . 5  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  ZZ )
21zred 9173 . . . 4  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  RR )
3 1red 7781 . . . 4  |-  ( ph  ->  1  e.  RR )
42, 3readdcld 7795 . . 3  |-  ( ph  ->  (inf ( B ,  RR ,  <  )  +  1 )  e.  RR )
52ltp1d 8688 . . 3  |-  ( ph  -> inf ( B ,  RR ,  <  )  <  (inf ( B ,  RR ,  <  )  +  1 ) )
6 lttri3 7844 . . . . 5  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
76adantl 275 . . . 4  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
8 zssinfcl.ex . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  B  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  B  z  <  y ) ) )
97, 8infglbti 6912 . . 3  |-  ( ph  ->  ( ( (inf ( B ,  RR ,  <  )  +  1 )  e.  RR  /\ inf ( B ,  RR ,  <  )  <  (inf ( B ,  RR ,  <  )  +  1 ) )  ->  E. z  e.  B  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
104, 5, 9mp2and 429 . 2  |-  ( ph  ->  E. z  e.  B  z  <  (inf ( B ,  RR ,  <  )  +  1 ) )
112adantr 274 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  RR )
12 zssinfcl.ss . . . . . . . 8  |-  ( ph  ->  B  C_  ZZ )
1312adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  B  C_  ZZ )
14 simprl 520 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  B
)
1513, 14sseldd 3098 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  ZZ )
1615zred 9173 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  RR )
177, 8inflbti 6911 . . . . . . 7  |-  ( ph  ->  ( z  e.  B  ->  -.  z  < inf ( B ,  RR ,  <  ) ) )
1817imp 123 . . . . . 6  |-  ( (
ph  /\  z  e.  B )  ->  -.  z  < inf ( B ,  RR ,  <  ) )
1918adantrr 470 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  -.  z  < inf ( B ,  RR ,  <  ) )
2011, 16, 19nltled 7883 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  <_ 
z )
21 simprr 521 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) )
221adantr 274 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  ZZ )
23 zleltp1 9109 . . . . . 6  |-  ( ( z  e.  ZZ  /\ inf ( B ,  RR ,  <  )  e.  ZZ )  ->  ( z  <_ inf ( B ,  RR ,  <  )  <->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
2415, 22, 23syl2anc 408 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  ( z  <_ inf ( B ,  RR ,  <  )  <->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
2521, 24mpbird 166 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  <_ inf ( B ,  RR ,  <  ) )
2611, 16letri3d 7879 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  (inf ( B ,  RR ,  <  )  =  z  <->  (inf ( B ,  RR ,  <  )  <_  z  /\  z  <_ inf ( B ,  RR ,  <  ) ) ) )
2720, 25, 26mpbir2and 928 . . 3  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  =  z )
2827, 14eqeltrd 2216 . 2  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  B )
2910, 28rexlimddv 2554 1  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   class class class wbr 3929  (class class class)co 5774  infcinf 6870   RRcr 7619   1c1 7621    + caddc 7623    < clt 7800    <_ cle 7801   ZZcz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator