ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zssre Unicode version

Theorem zssre 8516
Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
zssre  |-  ZZ  C_  RR

Proof of Theorem zssre
StepHypRef Expression
1 zre 8513 . 2  |-  ( x  e.  ZZ  ->  x  e.  RR )
21ssriv 3013 1  |-  ZZ  C_  RR
Colors of variables: wff set class
Syntax hints:    C_ wss 2983   RRcr 7119   ZZcz 8509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-rex 2359  df-rab 2362  df-v 2613  df-un 2987  df-in 2989  df-ss 2996  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-iota 4918  df-fv 4961  df-ov 5568  df-neg 7426  df-z 8510
This theorem is referenced by:  suprzclex  8603  zred  8627  lbzbi  8859  fzval2  9185  zsupcl  10575  infssuzex  10577  infssuzcldc  10579  gcddvds  10587  dvdslegcd  10588
  Copyright terms: Public domain W3C validator