![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zsubcl | Unicode version |
Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
zsubcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 8426 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | zcn 8426 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | negsub 7412 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 283 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | znegcl 8452 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | zaddcl 8461 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | sylan2 280 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 4, 7 | eqeltrrd 2157 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-cnex 7118 ax-resscn 7119 ax-1cn 7120 ax-1re 7121 ax-icn 7122 ax-addcl 7123 ax-addrcl 7124 ax-mulcl 7125 ax-addcom 7127 ax-addass 7129 ax-distr 7131 ax-i2m1 7132 ax-0lt1 7133 ax-0id 7135 ax-rnegex 7136 ax-cnre 7138 ax-pre-ltirr 7139 ax-pre-ltwlin 7140 ax-pre-lttrn 7141 ax-pre-ltadd 7143 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-int 3639 df-br 3788 df-opab 3842 df-id 4050 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-iota 4891 df-fun 4928 df-fv 4934 df-riota 5493 df-ov 5540 df-oprab 5541 df-mpt2 5542 df-pnf 7206 df-mnf 7207 df-xr 7208 df-ltxr 7209 df-le 7210 df-sub 7337 df-neg 7338 df-inn 8096 df-n0 8345 df-z 8422 |
This theorem is referenced by: ztri3or 8464 zrevaddcl 8471 znnsub 8472 nzadd 8473 znn0sub 8486 zneo 8518 zsubcld 8544 eluzsubi 8716 fzen 9127 uzsubsubfz 9131 fzrev 9166 fzrev2 9167 fzrevral2 9188 fzshftral 9190 fz0fzdiffz0 9207 difelfzle 9211 difelfznle 9212 elfzomelpfzo 9306 zmodcl 9415 frecfzen2 9498 facndiv 9752 bccmpl 9767 bcpasc 9779 moddvds 10338 modmulconst 10361 dvds2sub 10364 dvdssub2 10371 dvdssubr 10375 fzocongeq 10392 odd2np1 10406 omoe 10429 omeo 10431 divalgb 10458 divalgmod 10460 ndvdsadd 10464 nn0seqcvgd 10556 congr 10615 cncongr1 10618 cncongr2 10619 |
Copyright terms: Public domain | W3C validator |