ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemex Unicode version

Theorem zsupcllemex 11566
Description: Lemma for zsupcl 11567. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcllemex.m  |-  ( ph  ->  M  e.  ZZ )
zsupcllemex.sbm  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
zsupcllemex.mtru  |-  ( ph  ->  ch )
zsupcllemex.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
zsupcllemex.bnd  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
Assertion
Ref Expression
zsupcllemex  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
Distinct variable groups:    n, M, y    ch, n    j, n, ph, y    ps, j, x, z, y    x, n, z
Allowed substitution hints:    ph( x, z)    ps( n)    ch( x, y, z, j)    M( x, z, j)

Proof of Theorem zsupcllemex
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcllemex.bnd . 2  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
2 simpl 108 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  ph )
3 simprr 506 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  A. n  e.  ( ZZ>=
`  j )  -. 
ps )
4 fveq2 5389 . . . . . . . 8  |-  ( w  =  M  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  M )
)
54raleqdv 2609 . . . . . . 7  |-  ( w  =  M  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  M )  -. 
ps ) )
65anbi2d 459 . . . . . 6  |-  ( w  =  M  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  M )  -. 
ps ) ) )
76imbi1d 230 . . . . 5  |-  ( w  =  M  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
8 fveq2 5389 . . . . . . . 8  |-  ( w  =  k  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  k )
)
98raleqdv 2609 . . . . . . 7  |-  ( w  =  k  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  k )  -. 
ps ) )
109anbi2d 459 . . . . . 6  |-  ( w  =  k  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  k )  -. 
ps ) ) )
1110imbi1d 230 . . . . 5  |-  ( w  =  k  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  k )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
12 fveq2 5389 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  ( k  +  1 ) ) )
1312raleqdv 2609 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps ) )
1413anbi2d 459 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps ) ) )
1514imbi1d 230 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  ( k  +  1 ) )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
16 fveq2 5389 . . . . . . . 8  |-  ( w  =  j  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  j )
)
1716raleqdv 2609 . . . . . . 7  |-  ( w  =  j  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  j )  -. 
ps ) )
1817anbi2d 459 . . . . . 6  |-  ( w  =  j  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  j )  -. 
ps ) ) )
1918imbi1d 230 . . . . 5  |-  ( w  =  j  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
20 zsupcllemex.mtru . . . . . . . 8  |-  ( ph  ->  ch )
2120adantr 274 . . . . . . 7  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  ch )
22 zsupcllemex.m . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
23 uzid 9308 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
24 zsupcllemex.sbm . . . . . . . . . . 11  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
2524notbid 641 . . . . . . . . . 10  |-  ( n  =  M  ->  ( -.  ps  <->  -.  ch )
)
2625rspcv 2759 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  M )  -.  ps  ->  -.  ch ) )
2722, 23, 263syl 17 . . . . . . . 8  |-  ( ph  ->  ( A. n  e.  ( ZZ>= `  M )  -.  ps  ->  -.  ch )
)
2827imp 123 . . . . . . 7  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  -.  ch )
2921, 28pm2.21dd 594 . . . . . 6  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
3029a1i 9 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
31 zsupcllemex.dc . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
3231zsupcllemstep 11565 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  A. n  e.  ( ZZ>= `  k )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  ( ( ph  /\ 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
337, 11, 15, 19, 30, 32uzind4 9351 . . . 4  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
3433ad2antrl 481 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  -> 
( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
352, 3, 34mp2and 429 . 2  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
361, 35rexlimddv 2531 1  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 804    = wceq 1316    e. wcel 1465   A.wral 2393   E.wrex 2394   {crab 2397   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   RRcr 7587   1c1 7589    + caddc 7591    < clt 7768   ZZcz 9022   ZZ>=cuz 9294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-fz 9759  df-fzo 9888
This theorem is referenced by:  zsupcl  11567  infssuzex  11569  gcdsupex  11573
  Copyright terms: Public domain W3C validator