ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  00sr GIF version

Theorem 00sr 6852
Description: A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.)
Assertion
Ref Expression
00sr (𝐴R → (𝐴 ·R 0R) = 0R)

Proof of Theorem 00sr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 6810 . 2 R = ((P × P) / ~R )
2 oveq1 5519 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = (𝐴 ·R 0R))
32eqeq1d 2048 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R 0R) = 0R ↔ (𝐴 ·R 0R) = 0R))
4 1pr 6650 . . . . 5 1PP
5 mulsrpr 6829 . . . . 5 (((𝑥P𝑦P) ∧ (1PP ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R )
64, 4, 5mpanr12 415 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R )
7 mulclpr 6668 . . . . . . . . . 10 ((𝑥P ∧ 1PP) → (𝑥 ·P 1P) ∈ P)
84, 7mpan2 401 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) ∈ P)
9 mulclpr 6668 . . . . . . . . . 10 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
104, 9mpan2 401 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) ∈ P)
11 addclpr 6633 . . . . . . . . 9 (((𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P 1P) ∈ P) → ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P)
128, 10, 11syl2an 273 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P)
1312, 12anim12i 321 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P))
14 eqid 2040 . . . . . . . 8 (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P) = (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P)
15 enreceq 6819 . . . . . . . 8 (((((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P) ∧ (1PP ∧ 1PP)) → ([⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R ↔ (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P) = (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P)))
1614, 15mpbiri 157 . . . . . . 7 (((((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P) ∧ (1PP ∧ 1PP)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
1713, 16sylan 267 . . . . . 6 ((((𝑥P𝑦P) ∧ (𝑥P𝑦P)) ∧ (1PP ∧ 1PP)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
184, 4, 17mpanr12 415 . . . . 5 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
1918anidms 377 . . . 4 ((𝑥P𝑦P) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
206, 19eqtrd 2072 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨1P, 1P⟩] ~R )
21 df-0r 6814 . . . 4 0R = [⟨1P, 1P⟩] ~R
2221oveq2i 5523 . . 3 ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R )
2320, 22, 213eqtr4g 2097 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = 0R)
241, 3, 23ecoptocl 6193 1 (𝐴R → (𝐴 ·R 0R) = 0R)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  cop 3378  (class class class)co 5512  [cec 6104  Pcnp 6387  1Pc1p 6388   +P cpp 6389   ·P cmp 6390   ~R cer 6392  Rcnr 6393  0Rc0r 6394   ·R cmr 6398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-i1p 6563  df-iplp 6564  df-imp 6565  df-enr 6809  df-nr 6810  df-mr 6812  df-0r 6814
This theorem is referenced by:  pn0sr  6854  mulresr  6912  axi2m1  6947  axcnre  6953
  Copyright terms: Public domain W3C validator