ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0cnALT GIF version

Theorem 0cnALT 7264
Description: Alternate proof of 0cn 7077. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
0cnALT 0 ∈ ℂ

Proof of Theorem 0cnALT
StepHypRef Expression
1 ax-icn 7037 . . 3 i ∈ ℂ
2 cnegex 7252 . . 3 (i ∈ ℂ → ∃𝑥 ∈ ℂ (i + 𝑥) = 0)
31, 2ax-mp 7 . 2 𝑥 ∈ ℂ (i + 𝑥) = 0
4 addcl 7064 . . . . 5 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i + 𝑥) ∈ ℂ)
51, 4mpan 408 . . . 4 (𝑥 ∈ ℂ → (i + 𝑥) ∈ ℂ)
6 eleq1 2116 . . . 4 ((i + 𝑥) = 0 → ((i + 𝑥) ∈ ℂ ↔ 0 ∈ ℂ))
75, 6syl5ibcom 148 . . 3 (𝑥 ∈ ℂ → ((i + 𝑥) = 0 → 0 ∈ ℂ))
87rexlimiv 2444 . 2 (∃𝑥 ∈ ℂ (i + 𝑥) = 0 → 0 ∈ ℂ)
93, 8ax-mp 7 1 0 ∈ ℂ
Colors of variables: wff set class
Syntax hints:   = wceq 1259  wcel 1409  wrex 2324  (class class class)co 5540  cc 6945  0cc0 6947  ici 6949   + caddc 6950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-resscn 7034  ax-1cn 7035  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-iota 4895  df-fv 4938  df-ov 5543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator