ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0dvds GIF version

Theorem 0dvds 10128
Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
0dvds (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))

Proof of Theorem 0dvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0z 8313 . . . 4 0 ∈ ℤ
2 divides 10110 . . . 4 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁))
31, 2mpan 408 . . 3 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁))
4 zcn 8307 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
54mul01d 7462 . . . . . 6 (𝑛 ∈ ℤ → (𝑛 · 0) = 0)
6 eqtr2 2074 . . . . . 6 (((𝑛 · 0) = 𝑁 ∧ (𝑛 · 0) = 0) → 𝑁 = 0)
75, 6sylan2 274 . . . . 5 (((𝑛 · 0) = 𝑁𝑛 ∈ ℤ) → 𝑁 = 0)
87ancoms 259 . . . 4 ((𝑛 ∈ ℤ ∧ (𝑛 · 0) = 𝑁) → 𝑁 = 0)
98rexlimiva 2445 . . 3 (∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁𝑁 = 0)
103, 9syl6bi 156 . 2 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
11 dvds0 10123 . . . 4 (0 ∈ ℤ → 0 ∥ 0)
121, 11ax-mp 7 . . 3 0 ∥ 0
13 breq2 3796 . . 3 (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0))
1412, 13mpbiri 161 . 2 (𝑁 = 0 → 0 ∥ 𝑁)
1510, 14impbid1 134 1 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102   = wceq 1259  wcel 1409  wrex 2324   class class class wbr 3792  (class class class)co 5540  0cc0 6947   · cmul 6952  cz 8302  cdvds 10108
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-sub 7247  df-neg 7248  df-z 8303  df-dvds 10109
This theorem is referenced by:  dvdsabseq  10159
  Copyright terms: Public domain W3C validator