ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0el GIF version

Theorem 0el 3285
Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
0el (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem 0el
StepHypRef Expression
1 risset 2400 . 2 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴 𝑥 = ∅)
2 eq0 3283 . . 3 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
32rexbii 2379 . 2 (∃𝑥𝐴 𝑥 = ∅ ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
41, 3bitri 182 1 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 103  wal 1283   = wceq 1285  wcel 1434  wrex 2354  c0 3268
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-rex 2359  df-v 2613  df-dif 2985  df-nul 3269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator