![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0elon | GIF version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon | ⊢ ∅ ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4154 | . 2 ⊢ Ord ∅ | |
2 | 0ex 3913 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elon 4137 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
4 | 1, 3 | mpbir 144 | 1 ⊢ ∅ ∈ On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 ∅c0 3258 Ord word 4125 Oncon0 4126 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-nul 3912 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-dif 2976 df-in 2980 df-ss 2987 df-nul 3259 df-pw 3392 df-uni 3610 df-tr 3884 df-iord 4129 df-on 4131 |
This theorem is referenced by: inton 4156 onn0 4163 onm 4164 limon 4265 ordtriexmid 4273 ordtri2orexmid 4274 onsucsssucexmid 4278 onsucelsucexmid 4281 ordsoexmid 4313 ordpwsucexmid 4321 ordtri2or2exmid 4322 tfr0dm 5971 1on 6072 ordgt0ge1 6082 omv 6099 oa0 6101 om0 6102 oei0 6103 omcl 6105 omv2 6109 oaword1 6115 nna0r 6122 nnm0r 6123 card0 6516 |
Copyright terms: Public domain | W3C validator |