![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ima | GIF version |
Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.) |
Ref | Expression |
---|---|
0ima | ⊢ (∅ “ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 4703 | . . 3 ⊢ (∅ “ 𝐴) ⊆ ran ∅ | |
2 | rn0 4610 | . . 3 ⊢ ran ∅ = ∅ | |
3 | 1, 2 | sseqtri 3032 | . 2 ⊢ (∅ “ 𝐴) ⊆ ∅ |
4 | 0ss 3283 | . 2 ⊢ ∅ ⊆ (∅ “ 𝐴) | |
5 | 3, 4 | eqssi 3016 | 1 ⊢ (∅ “ 𝐴) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∅c0 3252 ran crn 4366 “ cima 4368 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3253 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-br 3788 df-opab 3842 df-xp 4371 df-cnv 4373 df-dm 4375 df-rn 4376 df-res 4377 df-ima 4378 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |