![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ne1 | GIF version |
Description: 0 ≠ 1 (common case). See aso 1ap0 7757. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ne1 | ⊢ 0 ≠ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7181 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0lt1 7303 | . 2 ⊢ 0 < 1 | |
3 | 1, 2 | ltneii 7274 | 1 ⊢ 0 ≠ 1 |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2246 0cc0 7043 1c1 7044 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1re 7132 ax-addrcl 7135 ax-0lt1 7144 ax-rnegex 7147 ax-pre-ltirr 7150 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-opab 3848 df-xp 4377 df-pnf 7217 df-mnf 7218 df-ltxr 7220 |
This theorem is referenced by: 1ne0 8174 prsize2ex 9833 mod2eq1n2dvds 10423 bezoutr1 10566 |
Copyright terms: Public domain | W3C validator |