ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelxp GIF version

Theorem 0nelxp 4399
Description: The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelxp ¬ ∅ ∈ (𝐴 × 𝐵)

Proof of Theorem 0nelxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2577 . . . . . 6 𝑥 ∈ V
2 vex 2577 . . . . . 6 𝑦 ∈ V
31, 2opnzi 3999 . . . . 5 𝑥, 𝑦⟩ ≠ ∅
4 simpl 106 . . . . . . 7 ((∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ∅ = ⟨𝑥, 𝑦⟩)
54eqcomd 2061 . . . . . 6 ((∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ⟨𝑥, 𝑦⟩ = ∅)
65necon3ai 2269 . . . . 5 (⟨𝑥, 𝑦⟩ ≠ ∅ → ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
73, 6ax-mp 7 . . . 4 ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
87nex 1405 . . 3 ¬ ∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
98nex 1405 . 2 ¬ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
10 elxp 4389 . 2 (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
119, 10mtbir 606 1 ¬ ∅ ∈ (𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 101   = wceq 1259  wex 1397  wcel 1409  wne 2220  c0 3251  cop 3405   × cxp 4370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-opab 3846  df-xp 4378
This theorem is referenced by:  dmsn0  4815  nfunv  4960  reldmtpos  5898  dmtpos  5901  0ncn  6965
  Copyright terms: Public domain W3C validator