![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ss | GIF version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
0ss | ⊢ ∅ ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3272 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 608 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 3013 | 1 ⊢ ∅ ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 ⊆ wss 2983 ∅c0 3268 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2613 df-dif 2985 df-in 2989 df-ss 2996 df-nul 3269 |
This theorem is referenced by: ss0b 3300 ssdifeq0 3342 sssnr 3566 ssprr 3569 uni0 3649 int0el 3687 0disj 3803 disjx0 3805 tr0 3907 0elpw 3959 fr0 4135 elnn 4375 rel0 4511 0ima 4736 fun0 5009 f0 5132 oaword1 6137 bdeq0 10950 bj-omtrans 11043 |
Copyright terms: Public domain | W3C validator |