![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0xr | GIF version |
Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
0xr | ⊢ 0 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7224 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | 0re 7181 | . 2 ⊢ 0 ∈ ℝ | |
3 | 1, 2 | sselii 2997 | 1 ⊢ 0 ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 ℝcr 7042 0cc0 7043 ℝ*cxr 7214 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-1re 7132 ax-addrcl 7135 ax-rnegex 7147 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-xr 7219 |
This theorem is referenced by: 0lepnf 8941 ge0gtmnf 8966 xlt0neg1 8981 xlt0neg2 8982 xle0neg1 8983 xle0neg2 8984 ioopos 9049 elxrge0 9077 0e0iccpnf 9079 halfleoddlt 10438 |
Copyright terms: Public domain | W3C validator |