ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.2 GIF version

Theorem 19.2 1570
Description: Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. (Contributed by O'Cat, 31-Mar-2008.)
Assertion
Ref Expression
19.2 (∀𝑥𝜑 → ∃𝑦𝜑)

Proof of Theorem 19.2
StepHypRef Expression
1 19.8a 1523 . 2 (𝜑 → ∃𝑦𝜑)
21sps 1471 1 (∀𝑥𝜑 → ∃𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1283  wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  i19.24  1571  i19.39  1572  19.34  1615  eusv2i  4213
  Copyright terms: Public domain W3C validator