ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.28v GIF version

Theorem 19.28v 1822
Description: Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
19.28v (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.28v
StepHypRef Expression
1 ax-17 1460 . 2 (𝜑 → ∀𝑥𝜑)
2119.28h 1495 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wal 1283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-4 1441  ax-17 1460
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  reu6  2782  dfer2  6173
  Copyright terms: Public domain W3C validator