![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.35-1 | GIF version |
Description: Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic (Contributed by Mario Carneiro, 2-Feb-2015.) |
Ref | Expression |
---|---|
19.35-1 | ⊢ (∃x(φ → ψ) → (∀xφ → ∃xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.29 1508 | . . 3 ⊢ ((∀xφ ∧ ∃x(φ → ψ)) → ∃x(φ ∧ (φ → ψ))) | |
2 | pm3.35 329 | . . . 4 ⊢ ((φ ∧ (φ → ψ)) → ψ) | |
3 | 2 | eximi 1488 | . . 3 ⊢ (∃x(φ ∧ (φ → ψ)) → ∃xψ) |
4 | 1, 3 | syl 14 | . 2 ⊢ ((∀xφ ∧ ∃x(φ → ψ)) → ∃xψ) |
5 | 4 | expcom 109 | 1 ⊢ (∃x(φ → ψ) → (∀xφ → ∃xψ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∀wal 1240 ∃wex 1378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-4 1397 ax-ial 1424 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 19.35i 1513 19.25 1514 19.36-1 1560 19.37-1 1561 spimt 1621 sbequi 1717 |
Copyright terms: Public domain | W3C validator |