ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.36aiv GIF version

Theorem 19.36aiv 1797
Description: Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.36aiv.1 𝑥(𝜑𝜓)
Assertion
Ref Expression
19.36aiv (∀𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.36aiv
StepHypRef Expression
1 nfv 1437 . 2 𝑥𝜓
2 19.36aiv.1 . 2 𝑥(𝜑𝜓)
31, 219.36i 1578 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1257  wex 1397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-17 1435  ax-ial 1443
This theorem depends on definitions:  df-bi 114  df-nf 1366
This theorem is referenced by:  vtocl2  2626  vtocl3  2627
  Copyright terms: Public domain W3C validator