![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.9 | GIF version |
Description: A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
Ref | Expression |
---|---|
19.9.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.9 | ⊢ (∃𝑥𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.9.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1453 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | 19.9h 1575 | 1 ⊢ (∃𝑥𝜑 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 Ⅎwnf 1390 ∃wex 1422 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 |
This theorem depends on definitions: df-bi 115 df-nf 1391 |
This theorem is referenced by: alexim 1577 19.19 1597 19.36-1 1604 19.44 1613 19.45 1614 19.41 1617 |
Copyright terms: Public domain | W3C validator |