ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9v GIF version

Theorem 19.9v 1767
Description: Special case of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-May-1995.) (Revised by NM, 21-May-2007.)
Assertion
Ref Expression
19.9v (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem 19.9v
StepHypRef Expression
1 ax-17 1435 . 2 (𝜑 → ∀𝑥𝜑)
2119.9h 1550 1 (∃𝑥𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wb 102  wex 1397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-17 1435
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  spc2gv  2660  spc3gv  2662  mo2icl  2743  brtpos2  5897
  Copyright terms: Public domain W3C validator