ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1e0p1 GIF version

Theorem 1e0p1 8468
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
1e0p1 1 = (0 + 1)

Proof of Theorem 1e0p1
StepHypRef Expression
1 0p1e1 8104 . 2 (0 + 1) = 1
21eqcomi 2060 1 1 = (0 + 1)
Colors of variables: wff set class
Syntax hints:   = wceq 1259  (class class class)co 5540  0cc0 6947  1c1 6948   + caddc 6950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-17 1435  ax-ial 1443  ax-ext 2038  ax-1cn 7035  ax-icn 7037  ax-addcl 7038  ax-mulcl 7040  ax-addcom 7042  ax-i2m1 7047  ax-0id 7050
This theorem depends on definitions:  df-bi 114  df-cleq 2049  df-clel 2052
This theorem is referenced by:  6p5e11  8499  7p4e11  8502  8p3e11  8507  9p2e11  8513  fzo01  9174  bcp1nk  9630
  Copyright terms: Public domain W3C validator