Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  1exp GIF version

Theorem 1exp 9414
 Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
1exp (𝑁 ∈ ℤ → (1↑𝑁) = 1)

Proof of Theorem 1exp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 7050 . . . 4 1 ∈ V
21snid 3427 . . 3 1 ∈ {1}
3 1ap0 7625 . . 3 1 # 0
4 ax-1cn 7005 . . . . 5 1 ∈ ℂ
5 snssi 3533 . . . . 5 (1 ∈ ℂ → {1} ⊆ ℂ)
64, 5ax-mp 7 . . . 4 {1} ⊆ ℂ
7 elsni 3418 . . . . . 6 (𝑥 ∈ {1} → 𝑥 = 1)
8 elsni 3418 . . . . . 6 (𝑦 ∈ {1} → 𝑦 = 1)
9 oveq12 5546 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1))
10 1t1e1 8105 . . . . . . 7 (1 · 1) = 1
119, 10syl6eq 2102 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1)
127, 8, 11syl2an 277 . . . . 5 ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1)
13 eleq1 2114 . . . . . . . 8 ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ V ↔ 1 ∈ V))
141, 13mpbiri 161 . . . . . . 7 ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ V)
15 elsng 3415 . . . . . . 7 ((𝑥 · 𝑦) ∈ V → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1))
1614, 15syl 14 . . . . . 6 ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1))
1716ibir 170 . . . . 5 ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ {1})
1812, 17syl 14 . . . 4 ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1})
197oveq2d 5553 . . . . . . 7 (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1))
20 1div1e1 7725 . . . . . . 7 (1 / 1) = 1
2119, 20syl6eq 2102 . . . . . 6 (𝑥 ∈ {1} → (1 / 𝑥) = 1)
22 eleq1 2114 . . . . . . . . 9 ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ V ↔ 1 ∈ V))
231, 22mpbiri 161 . . . . . . . 8 ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ V)
24 elsng 3415 . . . . . . . 8 ((1 / 𝑥) ∈ V → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1))
2523, 24syl 14 . . . . . . 7 ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1))
2625ibir 170 . . . . . 6 ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ {1})
2721, 26syl 14 . . . . 5 (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1})
2827adantr 265 . . . 4 ((𝑥 ∈ {1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {1})
296, 18, 2, 28expcl2lemap 9397 . . 3 ((1 ∈ {1} ∧ 1 # 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1})
302, 3, 29mp3an12 1231 . 2 (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1})
31 elsni 3418 . 2 ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1)
3230, 31syl 14 1 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102   = wceq 1257   ∈ wcel 1407  Vcvv 2572   ⊆ wss 2942  {csn 3400   class class class wbr 3789  (class class class)co 5537  ℂcc 6915  0cc0 6917  1c1 6918   · cmul 6922   # cap 7616   / cdiv 7695  ℤcz 8272  ↑cexp 9384 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336  ax-cnex 7003  ax-resscn 7004  ax-1cn 7005  ax-1re 7006  ax-icn 7007  ax-addcl 7008  ax-addrcl 7009  ax-mulcl 7010  ax-mulrcl 7011  ax-addcom 7012  ax-mulcom 7013  ax-addass 7014  ax-mulass 7015  ax-distr 7016  ax-i2m1 7017  ax-1rid 7019  ax-0id 7020  ax-rnegex 7021  ax-precex 7022  ax-cnre 7023  ax-pre-ltirr 7024  ax-pre-ltwlin 7025  ax-pre-lttrn 7026  ax-pre-apti 7027  ax-pre-ltadd 7028  ax-pre-mulgt0 7029  ax-pre-mulext 7030 This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-nel 2313  df-ral 2326  df-rex 2327  df-reu 2328  df-rmo 2329  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-if 3357  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-frec 6006  df-1o 6029  df-2o 6030  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479  df-enq0 6550  df-nq0 6551  df-0nq0 6552  df-plq0 6553  df-mq0 6554  df-inp 6592  df-i1p 6593  df-iplp 6594  df-iltp 6596  df-enr 6839  df-nr 6840  df-ltr 6843  df-0r 6844  df-1r 6845  df-0 6924  df-1 6925  df-r 6927  df-lt 6930  df-pnf 7091  df-mnf 7092  df-xr 7093  df-ltxr 7094  df-le 7095  df-sub 7217  df-neg 7218  df-reap 7610  df-ap 7617  df-div 7696  df-inn 7961  df-n0 8210  df-z 8273  df-uz 8540  df-iseq 9341  df-iexp 9385 This theorem is referenced by:  exprecap  9426  sq1  9478
 Copyright terms: Public domain W3C validator