ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1fv GIF version

Theorem 1fv 9097
Description: A one value function. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
1fv ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))

Proof of Theorem 1fv
StepHypRef Expression
1 0z 8312 . . . . . 6 0 ∈ ℤ
2 f1osng 5194 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁𝑉) → {⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁})
31, 2mpan 408 . . . . 5 (𝑁𝑉 → {⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁})
4 f1ofo 5160 . . . . . 6 ({⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁} → {⟨0, 𝑁⟩}:{0}–onto→{𝑁})
5 dffo2 5137 . . . . . . 7 ({⟨0, 𝑁⟩}:{0}–onto→{𝑁} ↔ ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}))
65biimpi 117 . . . . . 6 ({⟨0, 𝑁⟩}:{0}–onto→{𝑁} → ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}))
7 fzsn 9030 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...0) = {0})
81, 7ax-mp 7 . . . . . . . . . . . 12 (0...0) = {0}
98eqcomi 2060 . . . . . . . . . . 11 {0} = (0...0)
109feq2i 5067 . . . . . . . . . 10 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ↔ {⟨0, 𝑁⟩}:(0...0)⟶{𝑁})
1110biimpi 117 . . . . . . . . 9 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} → {⟨0, 𝑁⟩}:(0...0)⟶{𝑁})
12 snssi 3535 . . . . . . . . 9 (𝑁𝑉 → {𝑁} ⊆ 𝑉)
13 fss 5081 . . . . . . . . 9 (({⟨0, 𝑁⟩}:(0...0)⟶{𝑁} ∧ {𝑁} ⊆ 𝑉) → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
1411, 12, 13syl2an 277 . . . . . . . 8 (({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ 𝑁𝑉) → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
1514ex 112 . . . . . . 7 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
1615adantr 265 . . . . . 6 (({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}) → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
174, 6, 163syl 17 . . . . 5 ({⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁} → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
183, 17mpcom 36 . . . 4 (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
19 fvsng 5386 . . . . 5 ((0 ∈ ℤ ∧ 𝑁𝑉) → ({⟨0, 𝑁⟩}‘0) = 𝑁)
201, 19mpan 408 . . . 4 (𝑁𝑉 → ({⟨0, 𝑁⟩}‘0) = 𝑁)
2118, 20jca 294 . . 3 (𝑁𝑉 → ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
2221adantr 265 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
23 feq1 5057 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → (𝑃:(0...0)⟶𝑉 ↔ {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
24 fveq1 5204 . . . . 5 (𝑃 = {⟨0, 𝑁⟩} → (𝑃‘0) = ({⟨0, 𝑁⟩}‘0))
2524eqeq1d 2064 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃‘0) = 𝑁 ↔ ({⟨0, 𝑁⟩}‘0) = 𝑁))
2623, 25anbi12d 450 . . 3 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
2726adantl 266 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
2822, 27mpbird 160 1 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  wss 2944  {csn 3402  cop 3405  ran crn 4373  wf 4925  ontowfo 4927  1-1-ontowf1o 4928  cfv 4929  (class class class)co 5539  0cc0 6946  cz 8301  ...cfz 8975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-cnex 7032  ax-resscn 7033  ax-1re 7035  ax-addrcl 7038  ax-rnegex 7050  ax-pre-ltirr 7053  ax-pre-apti 7056
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-neg 7247  df-z 8302  df-uz 8569  df-fz 8976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator