ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1fv GIF version

Theorem 1fv 9909
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
1fv ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))

Proof of Theorem 1fv
StepHypRef Expression
1 0z 9058 . . . . . 6 0 ∈ ℤ
2 f1osng 5401 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁𝑉) → {⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁})
31, 2mpan 420 . . . . 5 (𝑁𝑉 → {⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁})
4 f1ofo 5367 . . . . . 6 ({⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁} → {⟨0, 𝑁⟩}:{0}–onto→{𝑁})
5 dffo2 5344 . . . . . . 7 ({⟨0, 𝑁⟩}:{0}–onto→{𝑁} ↔ ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}))
65biimpi 119 . . . . . 6 ({⟨0, 𝑁⟩}:{0}–onto→{𝑁} → ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}))
7 fzsn 9839 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...0) = {0})
81, 7ax-mp 5 . . . . . . . . . . . 12 (0...0) = {0}
98eqcomi 2141 . . . . . . . . . . 11 {0} = (0...0)
109feq2i 5261 . . . . . . . . . 10 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ↔ {⟨0, 𝑁⟩}:(0...0)⟶{𝑁})
1110biimpi 119 . . . . . . . . 9 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} → {⟨0, 𝑁⟩}:(0...0)⟶{𝑁})
12 snssi 3659 . . . . . . . . 9 (𝑁𝑉 → {𝑁} ⊆ 𝑉)
13 fss 5279 . . . . . . . . 9 (({⟨0, 𝑁⟩}:(0...0)⟶{𝑁} ∧ {𝑁} ⊆ 𝑉) → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
1411, 12, 13syl2an 287 . . . . . . . 8 (({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ 𝑁𝑉) → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
1514ex 114 . . . . . . 7 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
1615adantr 274 . . . . . 6 (({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}) → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
174, 6, 163syl 17 . . . . 5 ({⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁} → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
183, 17mpcom 36 . . . 4 (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
19 fvsng 5609 . . . . 5 ((0 ∈ ℤ ∧ 𝑁𝑉) → ({⟨0, 𝑁⟩}‘0) = 𝑁)
201, 19mpan 420 . . . 4 (𝑁𝑉 → ({⟨0, 𝑁⟩}‘0) = 𝑁)
2118, 20jca 304 . . 3 (𝑁𝑉 → ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
2221adantr 274 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
23 feq1 5250 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → (𝑃:(0...0)⟶𝑉 ↔ {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
24 fveq1 5413 . . . . 5 (𝑃 = {⟨0, 𝑁⟩} → (𝑃‘0) = ({⟨0, 𝑁⟩}‘0))
2524eqeq1d 2146 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃‘0) = 𝑁 ↔ ({⟨0, 𝑁⟩}‘0) = 𝑁))
2623, 25anbi12d 464 . . 3 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
2726adantl 275 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
2822, 27mpbird 166 1 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wss 3066  {csn 3522  cop 3525  ran crn 4535  wf 5114  ontowfo 5116  1-1-ontowf1o 5117  cfv 5118  (class class class)co 5767  0cc0 7613  cz 9047  ...cfz 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1re 7707  ax-addrcl 7710  ax-rnegex 7722  ax-pre-ltirr 7725  ax-pre-apti 7728
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-neg 7929  df-z 9048  df-uz 9320  df-fz 9784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator