![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1kp2ke3k | GIF version |
Description: Example for df-dec 8559, 1000 + 2000 = 3000.
This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision." The proof here starts with (2 + 1) = 3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted. This proof heavily relies on the decimal constructor df-dec 8559 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.) |
Ref | Expression |
---|---|
1kp2ke3k | ⊢ (;;;1000 + ;;;2000) = ;;;3000 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 8371 | . . . 4 ⊢ 1 ∈ ℕ0 | |
2 | 0nn0 8370 | . . . 4 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | deccl 8572 | . . 3 ⊢ ;10 ∈ ℕ0 |
4 | 3, 2 | deccl 8572 | . 2 ⊢ ;;100 ∈ ℕ0 |
5 | 2nn0 8372 | . . . 4 ⊢ 2 ∈ ℕ0 | |
6 | 5, 2 | deccl 8572 | . . 3 ⊢ ;20 ∈ ℕ0 |
7 | 6, 2 | deccl 8572 | . 2 ⊢ ;;200 ∈ ℕ0 |
8 | eqid 2082 | . 2 ⊢ ;;;1000 = ;;;1000 | |
9 | eqid 2082 | . 2 ⊢ ;;;2000 = ;;;2000 | |
10 | eqid 2082 | . . 3 ⊢ ;;100 = ;;100 | |
11 | eqid 2082 | . . 3 ⊢ ;;200 = ;;200 | |
12 | eqid 2082 | . . . 4 ⊢ ;10 = ;10 | |
13 | eqid 2082 | . . . 4 ⊢ ;20 = ;20 | |
14 | 1p2e3 8233 | . . . 4 ⊢ (1 + 2) = 3 | |
15 | 00id 7316 | . . . 4 ⊢ (0 + 0) = 0 | |
16 | 1, 2, 5, 2, 12, 13, 14, 15 | decadd 8611 | . . 3 ⊢ (;10 + ;20) = ;30 |
17 | 3, 2, 6, 2, 10, 11, 16, 15 | decadd 8611 | . 2 ⊢ (;;100 + ;;200) = ;;300 |
18 | 4, 2, 7, 2, 8, 9, 17, 15 | decadd 8611 | 1 ⊢ (;;;1000 + ;;;2000) = ;;;3000 |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 (class class class)co 5543 0cc0 7043 1c1 7044 + caddc 7046 2c2 8156 3c3 8157 ;cdc 8558 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-addcom 7138 ax-mulcom 7139 ax-addass 7140 ax-mulass 7141 ax-distr 7142 ax-i2m1 7143 ax-1rid 7145 ax-0id 7146 ax-rnegex 7147 ax-cnre 7149 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-br 3794 df-opab 3848 df-id 4056 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-iota 4897 df-fun 4934 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-sub 7348 df-inn 8107 df-2 8165 df-3 8166 df-4 8167 df-5 8168 df-6 8169 df-7 8170 df-8 8171 df-9 8172 df-n0 8356 df-dec 8559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |