![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1le2 | GIF version |
Description: 1 is less than or equal to 2 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1le2 | ⊢ 1 ≤ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7250 | . 2 ⊢ 1 ∈ ℝ | |
2 | 2re 8246 | . 2 ⊢ 2 ∈ ℝ | |
3 | 1lt2 8338 | . 2 ⊢ 1 < 2 | |
4 | 1, 2, 3 | ltleii 7350 | 1 ⊢ 1 ≤ 2 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3805 1c1 7114 ≤ cle 7286 2c2 8226 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7199 ax-resscn 7200 ax-1cn 7201 ax-1re 7202 ax-icn 7203 ax-addcl 7204 ax-addrcl 7205 ax-mulcl 7206 ax-addcom 7208 ax-addass 7210 ax-i2m1 7213 ax-0lt1 7214 ax-0id 7216 ax-rnegex 7217 ax-pre-ltirr 7220 ax-pre-lttrn 7222 ax-pre-ltadd 7224 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-xp 4397 df-cnv 4399 df-iota 4917 df-fv 4960 df-ov 5567 df-pnf 7287 df-mnf 7288 df-xr 7289 df-ltxr 7290 df-le 7291 df-2 8235 |
This theorem is referenced by: eluz2nn 8808 2eluzge1 8815 resqrexlemover 10115 |
Copyright terms: Public domain | W3C validator |