![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version |
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
Ref | Expression |
---|---|
1p1e2 | ⊢ (1 + 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8217 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1 | eqcomi 2087 | 1 ⊢ (1 + 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 (class class class)co 5563 1c1 7096 + caddc 7098 2c2 8208 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-cleq 2076 df-2 8217 |
This theorem is referenced by: 2m1e1 8275 add1p1 8399 sub1m1 8400 nn0n0n1ge2 8551 3halfnz 8577 10p10e20 8704 5t4e20 8711 6t4e24 8715 7t3e21 8719 8t3e24 8725 9t3e27 8732 fldiv4p1lem1div2 9439 m1modge3gt1 9505 fac2 9807 hash2 9888 nn0o1gt2 10512 3lcm2e6woprm 10675 |
Copyright terms: Public domain | W3C validator |