Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p2e3 GIF version

Theorem 1p2e3 8117
 Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 2cn 8061 . 2 2 ∈ ℂ
2 ax-1cn 7035 . 2 1 ∈ ℂ
3 2p1e3 8116 . 2 (2 + 1) = 3
41, 2, 3addcomli 7219 1 (1 + 2) = 3
 Colors of variables: wff set class Syntax hints:   = wceq 1259  (class class class)co 5540  1c1 6948   + caddc 6950  2c2 8040  3c3 8041 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-11 1413  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-addrcl 7039  ax-addcom 7042 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-in 2952  df-ss 2959  df-2 8049  df-3 8050 This theorem is referenced by:  binom3  9534  1kp2ke3k  10278
 Copyright terms: Public domain W3C validator