![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1pi | GIF version |
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1pi | ⊢ 1𝑜 ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6159 | . 2 ⊢ 1𝑜 ∈ ω | |
2 | 1n0 6080 | . 2 ⊢ 1𝑜 ≠ ∅ | |
3 | elni 6560 | . 2 ⊢ (1𝑜 ∈ N ↔ (1𝑜 ∈ ω ∧ 1𝑜 ≠ ∅)) | |
4 | 1, 2, 3 | mpbir2an 884 | 1 ⊢ 1𝑜 ∈ N |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 ≠ wne 2246 ∅c0 3258 ωcom 4339 1𝑜c1o 6058 Ncnpi 6524 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 ax-un 4196 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-pw 3392 df-sn 3412 df-pr 3413 df-uni 3610 df-int 3645 df-suc 4134 df-iom 4340 df-1o 6065 df-ni 6556 |
This theorem is referenced by: mulidpi 6570 1lt2pi 6592 nlt1pig 6593 indpi 6594 1nq 6618 1qec 6640 mulidnq 6641 1lt2nq 6658 archnqq 6669 prarloclemarch 6670 prarloclemarch2 6671 nnnq 6674 ltnnnq 6675 nq0m0r 6708 nq0a0 6709 addpinq1 6716 nq02m 6717 prarloclemlt 6745 prarloclemlo 6746 prarloclemn 6751 prarloclemcalc 6754 nqprm 6794 caucvgprlemm 6920 caucvgprprlemml 6946 caucvgprprlemmu 6947 caucvgsrlemasr 7028 caucvgsr 7040 nntopi 7122 |
Copyright terms: Public domain | W3C validator |