![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1stvalg | GIF version |
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
1stvalg | ⊢ (A ∈ V → (1st ‘A) = ∪ dom {A}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snexgOLD 3926 | . . 3 ⊢ (A ∈ V → {A} ∈ V) | |
2 | dmexg 4539 | . . 3 ⊢ ({A} ∈ V → dom {A} ∈ V) | |
3 | uniexg 4141 | . . 3 ⊢ (dom {A} ∈ V → ∪ dom {A} ∈ V) | |
4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (A ∈ V → ∪ dom {A} ∈ V) |
5 | sneq 3378 | . . . . 5 ⊢ (x = A → {x} = {A}) | |
6 | 5 | dmeqd 4480 | . . . 4 ⊢ (x = A → dom {x} = dom {A}) |
7 | 6 | unieqd 3582 | . . 3 ⊢ (x = A → ∪ dom {x} = ∪ dom {A}) |
8 | df-1st 5709 | . . 3 ⊢ 1st = (x ∈ V ↦ ∪ dom {x}) | |
9 | 7, 8 | fvmptg 5191 | . 2 ⊢ ((A ∈ V ∧ ∪ dom {A} ∈ V) → (1st ‘A) = ∪ dom {A}) |
10 | 4, 9 | mpdan 398 | 1 ⊢ (A ∈ V → (1st ‘A) = ∪ dom {A}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1242 ∈ wcel 1390 Vcvv 2551 {csn 3367 ∪ cuni 3571 dom cdm 4288 ‘cfv 4845 1st c1st 5707 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 ax-un 4136 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-sbc 2759 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-br 3756 df-opab 3810 df-mpt 3811 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-rn 4299 df-iota 4810 df-fun 4847 df-fv 4853 df-1st 5709 |
This theorem is referenced by: 1st0 5713 op1st 5715 elxp6 5738 |
Copyright terms: Public domain | W3C validator |