ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2clim GIF version

Theorem 2clim 10052
Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1 𝑍 = (ℤ𝑀)
2clim.2 (𝜑𝑀 ∈ ℤ)
2clim.3 (𝜑𝐺𝑉)
2clim.5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2clim.6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)
2clim.7 (𝜑𝐹𝐴)
Assertion
Ref Expression
2clim (𝜑𝐺𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝑥,𝑗,𝐹,𝑘   𝑗,𝐺,𝑥   𝑗,𝑀   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘,𝑥   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑀(𝑥,𝑘)   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem 2clim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2clim.6 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)
2 rphalfcl 8707 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
3 breq2 3795 . . . . . . . 8 (𝑥 = (𝑦 / 2) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2)))
43rexralbidv 2367 . . . . . . 7 (𝑥 = (𝑦 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2)))
54rspccva 2672 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2))
61, 2, 5syl2an 277 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2))
7 2clim.1 . . . . . 6 𝑍 = (ℤ𝑀)
8 2clim.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
98adantr 265 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
102adantl 266 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
11 eqidd 2057 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
12 2clim.7 . . . . . . 7 (𝜑𝐹𝐴)
1312adantr 265 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹𝐴)
147, 9, 10, 11, 13climi 10038 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)))
157rexanuz2 9817 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
166, 14, 15sylanbrc 402 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
177uztrn2 8585 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 an12 503 . . . . . . . . 9 (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) ↔ ((𝐹𝑘) ∈ ℂ ∧ ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
19 simprr 492 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (𝐹𝑘) ∈ ℂ)
20 2clim.5 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2120ad2ant2r 486 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (𝐺𝑘) ∈ ℂ)
2219, 21abssubd 10019 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (abs‘((𝐹𝑘) − (𝐺𝑘))) = (abs‘((𝐺𝑘) − (𝐹𝑘))))
2322breq1d 3801 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ↔ (abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2)))
2423anbi1d 446 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) ↔ ((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
25 climcl 10033 . . . . . . . . . . . . . . 15 (𝐹𝐴𝐴 ∈ ℂ)
2612, 25syl 14 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
2726ad2antrr 465 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → 𝐴 ∈ ℂ)
28 rpre 8686 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
2928ad2antlr 466 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → 𝑦 ∈ ℝ)
30 abs3lem 9937 . . . . . . . . . . . . 13 ((((𝐺𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ 𝑦 ∈ ℝ)) → (((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3121, 27, 19, 29, 30syl22anc 1147 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3224, 31sylbid 143 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3332anassrs 386 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3433expimpd 349 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3518, 34syl5bi 145 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3617, 35sylan2 274 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3736anassrs 386 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3837ralimdva 2404 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3938reximdva 2438 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
4016, 39mpd 13 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
4140ralrimiva 2409 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
42 2clim.3 . . 3 (𝜑𝐺𝑉)
43 eqidd 2057 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
447, 8, 42, 43, 26, 20clim2c 10035 . 2 (𝜑 → (𝐺𝐴 ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
4541, 44mpbird 160 1 (𝜑𝐺𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  wral 2323  wrex 2324   class class class wbr 3791  cfv 4929  (class class class)co 5539  cc 6944  cr 6945   < clt 7118  cmin 7244   / cdiv 7724  2c2 8039  cz 8301  cuz 8568  +crp 8680  abscabs 9823  cli 10029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059  ax-arch 7060  ax-caucvg 7061
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-if 3359  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-frec 6008  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-inn 7990  df-2 8048  df-3 8049  df-4 8050  df-n0 8239  df-z 8302  df-uz 8569  df-rp 8681  df-iseq 9375  df-iexp 9419  df-cj 9669  df-re 9670  df-im 9671  df-rsqrt 9824  df-abs 9825  df-clim 10030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator