ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2false GIF version

Theorem 2false 650
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
2false.1 ¬ 𝜑
2false.2 ¬ 𝜓
Assertion
Ref Expression
2false (𝜑𝜓)

Proof of Theorem 2false
StepHypRef Expression
1 2false.1 . . 3 ¬ 𝜑
21pm2.21i 608 . 2 (𝜑𝜓)
3 2false.2 . . 3 ¬ 𝜓
43pm2.21i 608 . 2 (𝜓𝜑)
52, 4impbii 124 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 105  ax-ia3 106  ax-in2 578
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  bianfi  889  bifal  1298  dfnul2  3270  dfnul3  3271  rab0  3290  iun0  3755  0iun  3756  0xp  4469  cnv0  4780  co02  4887  0er  6234  bdnth  10929  bdnthALT  10930
  Copyright terms: Public domain W3C validator