![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2mulicn | GIF version |
Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2mulicn | ⊢ (2 · i) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8166 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-icn 7122 | . 2 ⊢ i ∈ ℂ | |
3 | 1, 2 | mulcli 7175 | 1 ⊢ (2 · i) ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 (class class class)co 5537 ℂcc 7030 ici 7034 · cmul 7037 2c2 8145 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-resscn 7119 ax-1re 7121 ax-icn 7122 ax-addrcl 7124 ax-mulcl 7125 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-in 2980 df-ss 2987 df-2 8154 |
This theorem is referenced by: 2muline0 8312 imval2 9908 |
Copyright terms: Public domain | W3C validator |