ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn GIF version

Theorem 2mulicn 8309
Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 8166 . 2 2 ∈ ℂ
2 ax-icn 7122 . 2 i ∈ ℂ
31, 2mulcli 7175 1 (2 · i) ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 1434  (class class class)co 5537  cc 7030  ici 7034   · cmul 7037  2c2 8145
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-resscn 7119  ax-1re 7121  ax-icn 7122  ax-addrcl 7124  ax-mulcl 7125
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-in 2980  df-ss 2987  df-2 8154
This theorem is referenced by:  2muline0  8312  imval2  9908
  Copyright terms: Public domain W3C validator