ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndval2 GIF version

Theorem 2ndval2 6047
Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
2ndval2 (𝐴 ∈ (V × V) → (2nd𝐴) = {𝐴})

Proof of Theorem 2ndval2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4596 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 2684 . . . . . 6 𝑥 ∈ V
3 vex 2684 . . . . . 6 𝑦 ∈ V
42, 3op2nd 6038 . . . . 5 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
52, 3op2ndb 5017 . . . . 5 {⟨𝑥, 𝑦⟩} = 𝑦
64, 5eqtr4i 2161 . . . 4 (2nd ‘⟨𝑥, 𝑦⟩) = {⟨𝑥, 𝑦⟩}
7 fveq2 5414 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = (2nd ‘⟨𝑥, 𝑦⟩))
8 sneq 3533 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
98cnveqd 4710 . . . . . . 7 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
109inteqd 3771 . . . . . 6 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1110inteqd 3771 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1211inteqd 3771 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
136, 7, 123eqtr4a 2196 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = {𝐴})
1413exlimivv 1868 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = {𝐴})
151, 14sylbi 120 1 (𝐴 ∈ (V × V) → (2nd𝐴) = {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wex 1468  wcel 1480  Vcvv 2681  {csn 3522  cop 3525   cint 3766   × cxp 4532  ccnv 4533  cfv 5118  2nd c2nd 6030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-iota 5083  df-fun 5120  df-fv 5126  df-2nd 6032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator