ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2onn GIF version

Theorem 2onn 6125
Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.)
Assertion
Ref Expression
2onn 2𝑜 ∈ ω

Proof of Theorem 2onn
StepHypRef Expression
1 df-2o 6033 . 2 2𝑜 = suc 1𝑜
2 1onn 6124 . . 3 1𝑜 ∈ ω
3 peano2 4346 . . 3 (1𝑜 ∈ ω → suc 1𝑜 ∈ ω)
42, 3ax-mp 7 . 2 suc 1𝑜 ∈ ω
51, 4eqeltri 2126 1 2𝑜 ∈ ω
Colors of variables: wff set class
Syntax hints:  wcel 1409  suc csuc 4130  ωcom 4341  1𝑜c1o 6025  2𝑜c2o 6026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-uni 3609  df-int 3644  df-suc 4136  df-iom 4342  df-1o 6032  df-2o 6033
This theorem is referenced by:  3onn  6126  nn2m  6130  prarloclemarch2  6575  nq02m  6621  prarloclemlt  6649  prarloclemlo  6650  prarloclem3  6653  prarloclemn  6655  prarloclem5  6656  prarloclemcalc  6658
  Copyright terms: Public domain W3C validator