ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2optocl GIF version

Theorem 2optocl 4445
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
Hypotheses
Ref Expression
2optocl.1 𝑅 = (𝐶 × 𝐷)
2optocl.2 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
2optocl.3 (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))
2optocl.4 (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)
Assertion
Ref Expression
2optocl ((𝐴𝑅𝐵𝑅) → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑧,𝐵,𝑤   𝑥,𝐶,𝑦,𝑧,𝑤   𝑥,𝐷,𝑦,𝑧,𝑤   𝜓,𝑥,𝑦   𝜒,𝑧,𝑤   𝑧,𝑅,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑧,𝑤)   𝜒(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem 2optocl
StepHypRef Expression
1 2optocl.1 . . 3 𝑅 = (𝐶 × 𝐷)
2 2optocl.3 . . . 4 (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))
32imbi2d 223 . . 3 (⟨𝑧, 𝑤⟩ = 𝐵 → ((𝐴𝑅𝜓) ↔ (𝐴𝑅𝜒)))
4 2optocl.2 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
54imbi2d 223 . . . . 5 (⟨𝑥, 𝑦⟩ = 𝐴 → (((𝑧𝐶𝑤𝐷) → 𝜑) ↔ ((𝑧𝐶𝑤𝐷) → 𝜓)))
6 2optocl.4 . . . . . 6 (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)
76ex 112 . . . . 5 ((𝑥𝐶𝑦𝐷) → ((𝑧𝐶𝑤𝐷) → 𝜑))
81, 5, 7optocl 4444 . . . 4 (𝐴𝑅 → ((𝑧𝐶𝑤𝐷) → 𝜓))
98com12 30 . . 3 ((𝑧𝐶𝑤𝐷) → (𝐴𝑅𝜓))
101, 3, 9optocl 4444 . 2 (𝐵𝑅 → (𝐴𝑅𝜒))
1110impcom 120 1 ((𝐴𝑅𝐵𝑅) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  cop 3406   × cxp 4371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-opab 3847  df-xp 4379
This theorem is referenced by:  3optocl  4446  ecopovsym  6233  ecopovsymg  6236  th3qlem2  6240  axaddcom  7002
  Copyright terms: Public domain W3C validator