ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2pwuninelg GIF version

Theorem 2pwuninelg 5861
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
Assertion
Ref Expression
2pwuninelg (𝐴𝑉 → ¬ 𝒫 𝒫 𝐴𝐴)

Proof of Theorem 2pwuninelg
StepHypRef Expression
1 en2lp 4248 . 2 ¬ (𝐴 ∈ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴𝐴)
2 pwuni 3940 . . . 4 𝐴 ⊆ 𝒫 𝐴
3 elpwg 3364 . . . 4 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐴𝐴 ⊆ 𝒫 𝐴))
42, 3mpbiri 157 . . 3 (𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝐴)
5 ax-ia3 101 . . 3 (𝐴 ∈ 𝒫 𝒫 𝐴 → (𝒫 𝒫 𝐴𝐴 → (𝐴 ∈ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴𝐴)))
64, 5syl 14 . 2 (𝐴𝑉 → (𝒫 𝒫 𝐴𝐴 → (𝐴 ∈ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴𝐴)))
71, 6mtoi 590 1 (𝐴𝑉 → ¬ 𝒫 𝒫 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wcel 1393  wss 2914  𝒫 cpw 3356   cuni 3577
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-setind 4232
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-v 2556  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-uni 3578
This theorem is referenced by:  mnfnre  7024
  Copyright terms: Public domain W3C validator