ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rexuz GIF version

Theorem 2rexuz 8620
Description: Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.)
Assertion
Ref Expression
2rexuz (∃𝑚𝑛 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑))
Distinct variable group:   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)

Proof of Theorem 2rexuz
StepHypRef Expression
1 rexuz2 8619 . . 3 (∃𝑛 ∈ (ℤ𝑚)𝜑 ↔ (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑)))
21exbii 1512 . 2 (∃𝑚𝑛 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑)))
3 df-rex 2329 . 2 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑)))
42, 3bitr4i 180 1 (∃𝑚𝑛 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  wex 1397  wcel 1409  wrex 2324   class class class wbr 3791  cfv 4929  cle 7119  cz 8301  cuz 8568
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-cnex 7032  ax-resscn 7033
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-fv 4937  df-ov 5542  df-neg 7247  df-z 8302  df-uz 8569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator