ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2tnp1ge0ge0 GIF version

Theorem 2tnp1ge0ge0 9383
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2tnp1ge0ge0 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))

Proof of Theorem 2tnp1ge0ge0
StepHypRef Expression
1 2z 8460 . . . . . . 7 2 ∈ ℤ
21a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3 id 19 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
42, 3zmulcld 8556 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
54peano2zd 8553 . . . 4 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
65zred 8550 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℝ)
7 2re 8176 . . . 4 2 ∈ ℝ
87a1i 9 . . 3 (𝑁 ∈ ℤ → 2 ∈ ℝ)
9 2pos 8197 . . . 4 0 < 2
109a1i 9 . . 3 (𝑁 ∈ ℤ → 0 < 2)
11 ge0div 8016 . . 3 ((((2 · 𝑁) + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2)))
126, 8, 10, 11syl3anc 1170 . 2 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2)))
134zcnd 8551 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
14 1cnd 7197 . . . . 5 (𝑁 ∈ ℤ → 1 ∈ ℂ)
15 2cn 8177 . . . . . . 7 2 ∈ ℂ
16 2ap0 8199 . . . . . . 7 2 # 0
1715, 16pm3.2i 266 . . . . . 6 (2 ∈ ℂ ∧ 2 # 0)
1817a1i 9 . . . . 5 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 # 0))
19 divdirap 7852 . . . . 5 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
2013, 14, 18, 19syl3anc 1170 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
21 zcn 8437 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
22 2cnd 8179 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
2316a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 # 0)
2421, 22, 23divcanap3d 7949 . . . . 5 (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁)
2524oveq1d 5558 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
2620, 25eqtrd 2114 . . 3 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
2726breq2d 3805 . 2 (𝑁 ∈ ℤ → (0 ≤ (((2 · 𝑁) + 1) / 2) ↔ 0 ≤ (𝑁 + (1 / 2))))
28 zre 8436 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
29 halfre 8311 . . . . 5 (1 / 2) ∈ ℝ
3029a1i 9 . . . 4 (𝑁 ∈ ℤ → (1 / 2) ∈ ℝ)
3128, 30readdcld 7210 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈ ℝ)
32 halfge0 8314 . . . 4 0 ≤ (1 / 2)
3328, 30addge01d 7700 . . . 4 (𝑁 ∈ ℤ → (0 ≤ (1 / 2) ↔ 𝑁 ≤ (𝑁 + (1 / 2))))
3432, 33mpbii 146 . . 3 (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2)))
35 1red 7196 . . . 4 (𝑁 ∈ ℤ → 1 ∈ ℝ)
36 halflt1 8315 . . . . 5 (1 / 2) < 1
3736a1i 9 . . . 4 (𝑁 ∈ ℤ → (1 / 2) < 1)
3830, 35, 28, 37ltadd2dd 7593 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1))
39 btwnzge0 9382 . . 3 ((((𝑁 + (1 / 2)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
4031, 3, 34, 38, 39syl22anc 1171 . 2 (𝑁 ∈ ℤ → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
4112, 27, 403bitrd 212 1 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434   class class class wbr 3793  (class class class)co 5543  cc 7041  cr 7042  0cc0 7043  1c1 7044   + caddc 7046   · cmul 7048   < clt 7215  cle 7216   # cap 7748   / cdiv 7827  2c2 8156  cz 8432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-2 8165  df-n0 8356  df-z 8433
This theorem is referenced by:  oddnn02np1  10424
  Copyright terms: Public domain W3C validator