![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2tp1odd | GIF version |
Description: A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.) |
Ref | Expression |
---|---|
2tp1odd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℤ) | |
2 | oveq2 5572 | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → (2 · 𝑘) = (2 · 𝐴)) | |
3 | 2 | oveq1d 5579 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1)) |
4 | 3 | eqeq1d 2091 | . . . . . 6 ⊢ (𝑘 = 𝐴 → (((2 · 𝑘) + 1) = ((2 · 𝐴) + 1) ↔ ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1))) |
5 | 4 | adantl 271 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑘 = 𝐴) → (((2 · 𝑘) + 1) = ((2 · 𝐴) + 1) ↔ ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1))) |
6 | eqidd 2084 | . . . . 5 ⊢ (𝐴 ∈ ℤ → ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1)) | |
7 | 1, 5, 6 | rspcedvd 2716 | . . . 4 ⊢ (𝐴 ∈ ℤ → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1)) |
8 | 2z 8530 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
9 | 8 | a1i 9 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 2 ∈ ℤ) |
10 | 9, 1 | zmulcld 8626 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (2 · 𝐴) ∈ ℤ) |
11 | 10 | peano2zd 8623 | . . . . 5 ⊢ (𝐴 ∈ ℤ → ((2 · 𝐴) + 1) ∈ ℤ) |
12 | odd2np1 10498 | . . . . 5 ⊢ (((2 · 𝐴) + 1) ∈ ℤ → (¬ 2 ∥ ((2 · 𝐴) + 1) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1))) | |
13 | 11, 12 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℤ → (¬ 2 ∥ ((2 · 𝐴) + 1) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1))) |
14 | 7, 13 | mpbird 165 | . . 3 ⊢ (𝐴 ∈ ℤ → ¬ 2 ∥ ((2 · 𝐴) + 1)) |
15 | 14 | adantr 270 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ ((2 · 𝐴) + 1)) |
16 | breq2 3809 | . . 3 ⊢ (𝐵 = ((2 · 𝐴) + 1) → (2 ∥ 𝐵 ↔ 2 ∥ ((2 · 𝐴) + 1))) | |
17 | 16 | adantl 271 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → (2 ∥ 𝐵 ↔ 2 ∥ ((2 · 𝐴) + 1))) |
18 | 15, 17 | mtbird 631 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∈ wcel 1434 ∃wrex 2354 class class class wbr 3805 (class class class)co 5564 1c1 7114 + caddc 7116 · cmul 7118 2c2 8226 ℤcz 8502 ∥ cdvds 10421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7199 ax-resscn 7200 ax-1cn 7201 ax-1re 7202 ax-icn 7203 ax-addcl 7204 ax-addrcl 7205 ax-mulcl 7206 ax-mulrcl 7207 ax-addcom 7208 ax-mulcom 7209 ax-addass 7210 ax-mulass 7211 ax-distr 7212 ax-i2m1 7213 ax-0lt1 7214 ax-1rid 7215 ax-0id 7216 ax-rnegex 7217 ax-precex 7218 ax-cnre 7219 ax-pre-ltirr 7220 ax-pre-ltwlin 7221 ax-pre-lttrn 7222 ax-pre-apti 7223 ax-pre-ltadd 7224 ax-pre-mulgt0 7225 ax-pre-mulext 7226 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-xor 1308 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2825 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-br 3806 df-opab 3860 df-id 4076 df-po 4079 df-iso 4080 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-iota 4917 df-fun 4954 df-fv 4960 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-pnf 7287 df-mnf 7288 df-xr 7289 df-ltxr 7290 df-le 7291 df-sub 7418 df-neg 7419 df-reap 7812 df-ap 7819 df-div 7898 df-inn 8177 df-2 8235 df-n0 8426 df-z 8503 df-dvds 10422 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |