ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant1r GIF version

Theorem 3adant1r 1139
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1r (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213expb 1116 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
32adantlr 454 . 2 (((𝜑𝜏) ∧ (𝜓𝜒)) → 𝜃)
433impb 1111 1 (((𝜑𝜏) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by:  3adant2r  1141  3adant3r  1143  mulassnqg  6540  prarloc  6659  prmuloc  6722  addasssrg  6899  axaddass  7004
  Copyright terms: Public domain W3C validator